Diffusion Probabilistic Models (DPMs) have recently been employed for image deblurring. DPMs are trained via a stochastic denoising process that maps Gaussian noise to the high-quality image, conditioned on the concatenated blurry input. Despite their high-quality generated samples, image-conditioned Diffusion Probabilistic Models (icDPM) rely on synthetic pairwise training data (in-domain), with potentially unclear robustness towards real-world unseen images (out-of-domain). In this work, we investigate the generalization ability of icDPMs in deblurring, and propose a simple but effective guidance to significantly alleviate artifacts, and improve the out-of-distribution performance. Particularly, we propose to first extract a multiscale domain-generalizable representation from the input image that removes domain-specific information while preserving the underlying image structure. The representation is then added into the feature maps of the conditional diffusion model as an extra guidance that helps improving the generalization. To benchmark, we focus on out-of-distribution performance by applying a single-dataset trained model to three external and diverse test sets. The effectiveness of the proposed formulation is demonstrated by improvements over the standard icDPM, as well as state-of-the-art performance on perceptual quality and competitive distortion metrics compared to existing methods.
translated by 谷歌翻译
我们定义了更广泛的腐败过程,该过程概括了先前已知的扩散模型。为了扭转这些一般的扩散,我们提出了一个称为“软得分匹配”的新目标,可以证明可以学习任何线性腐败过程的得分功能,并为Celeba提供最先进的结果。软得分匹配结合了网络中的降解过程,并训练模型以预测腐败与扩散观察相匹配的干净图像。我们表明,我们的目标在适当的规律性条件下为腐败过程的家庭学习了可能性的梯度。我们进一步开发了一种原则性的方法,以选择一般扩散过程的损坏水平和一种我们称为动量采样器的新型抽样方法。我们评估了我们的框架,腐败是高斯模糊和低幅度添加噪声。我们的方法在Celeba-64上获得了最先进的FID得分$ 1.85 $,表现优于所有以前的线性扩散模型。与香草deno的扩散相比,我们还显示出显着的计算益处。
translated by 谷歌翻译
变形金刚最近在计算机视觉社区中引起了极大的关注。然而,缺乏关于图像大小的自我注意力机制的可扩展性限制了它们在最先进的视觉骨架中的广泛采用。在本文中,我们介绍了一种高效且可扩展的注意模型,我们称之为多轴注意,该模型由两个方面组成:阻止局部和扩张的全球关注。这些设计选择允许仅具有线性复杂性的任意输入分辨率上进行全局本地空间相互作用。我们还通过有效地将我们提出的注意模型与卷积混合在一起,提出了一个新的建筑元素,因此,通过简单地在多个阶段重复基本的构建块,提出了一个简单的层次视觉主链,称为Maxvit。值得注意的是,即使在早期的高分辨率阶段,Maxvit也能够在整个网络中“看到”。我们证明了模型在广泛的视觉任务上的有效性。根据图像分类,Maxvit在各种设置下实现最先进的性能:没有额外的数据,Maxvit获得了86.5%的Imagenet-1K Top-1精度;使用Imagenet-21K预训练,我们的模型可实现88.7%的TOP-1精度。对于下游任务,麦克斯维特(Maxvit)作为骨架可在对象检测以及视觉美学评估方面提供有利的性能。我们还表明,我们提出的模型表达了ImageNet上强大的生成建模能力,这表明了Maxvit块作为通用视觉模块的优势潜力。源代码和训练有素的模型将在https://github.com/google-research/maxvit上找到。
translated by 谷歌翻译
最近的变形金刚和多层Perceptron(MLP)模型的进展为计算机视觉任务提供了新的网络架构设计。虽然这些模型在许多愿景任务中被证明是有效的,但在图像识别之类的愿景中,仍然存在挑战,使他们适应低级视觉。支持高分辨率图像和本地注意力的局限性的不灵活性可能是使用变压器和MLP在图像恢复中的主要瓶颈。在这项工作中,我们介绍了一个多轴MLP基于MARIC的架构,称为Maxim,可用作用于图像处理任务的高效和灵活的通用视觉骨干。 Maxim使用UNET形的分层结构,并支持由空间门控MLP启用的远程交互。具体而言,Maxim包含两个基于MLP的构建块:多轴门控MLP,允许局部和全球视觉线索的高效和可扩展的空间混合,以及交叉栅栏,替代跨关注的替代方案 - 细分互补。这两个模块都仅基于MLP,而且还受益于全局和“全卷积”,两个属性对于图像处理是可取的。我们广泛的实验结果表明,所提出的Maxim模型在一系列图像处理任务中实现了十多个基准的最先进的性能,包括去噪,失败,派热,脱落和增强,同时需要更少或相当的数量参数和拖鞋而不是竞争模型。
translated by 谷歌翻译
图像deBlurring是一种对给定输入图像的多种合理的解决方案是一个不适的问题。然而,大多数现有方法产生了清洁图像的确定性估计,并且训练以最小化像素级失真。已知这些指标与人类感知差,并且通常导致不切实际的重建。我们基于条件扩散模型介绍了盲脱模的替代框架。与现有技术不同,我们训练一个随机采样器,它改进了确定性预测器的输出,并且能够为给定输入产生多样化的合理重建。这导致跨多个标准基准的现有最先进方法的感知质量的显着提高。与典型的扩散模型相比,我们的预测和精致方法也能实现更有效的采样。结合仔细调整的网络架构和推理过程,我们的方法在PSNR等失真度量方面具有竞争力。这些结果表明了我们基于扩散和挑战的扩散和挑战的策略的显着优势,生产单一确定性重建的广泛使用策略。
translated by 谷歌翻译
Vehicle-to-Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non-line-of-sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, we proposed a Context-Aware Target Classification (CA-TC) module coupled with a hybrid learning-based predictive modeling technique for CVS systems. The CA-TC consists of two modules: A Context-Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA-TC, making them more robust and reliable. The CAM leverages vehicles path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real-world data, we learn a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior. We combine offline training and online model updates with on-the-fly forecasting to account for new possible driver behaviors. Finally, our framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.
translated by 谷歌翻译
Based on WHO statistics, many individuals are suffering from visual problems, and their number is increasing yearly. One of the most critical needs they have is the ability to navigate safely, which is why researchers are trying to create and improve various navigation systems. This paper provides a navigation concept based on the visual slam and Yolo concepts using monocular cameras. Using the ORB-SLAM algorithm, our concept creates a map from a predefined route that a blind person most uses. Since visually impaired people are curious about their environment and, of course, to guide them properly, obstacle detection has been added to the system. As mentioned earlier, safe navigation is vital for visually impaired people, so our concept has a path-following part. This part consists of three steps: obstacle distance estimation, path deviation detection, and next-step prediction, done by monocular cameras.
translated by 谷歌翻译
National Association of Securities Dealers Automated Quotations(NASDAQ) is an American stock exchange based. It is one of the most valuable stock economic indices in the world and is located in New York City \cite{pagano2008quality}. The volatility of the stock market and the influence of economic indicators such as crude oil, gold, and the dollar in the stock market, and NASDAQ shares are also affected and have a volatile and chaotic nature \cite{firouzjaee2022lstm}.In this article, we have examined the effect of oil, dollar, gold, and the volatility of the stock market in the economic market, and then we have also examined the effect of these indicators on NASDAQ stocks. Then we started to analyze the impact of the feedback on the past prices of NASDAQ stocks and its impact on the current price. Using PCA and Linear Regression algorithm, we have designed an optimal dynamic learning experience for modeling these stocks. The results obtained from the quantitative analysis are consistent with the results of the qualitative analysis of economic studies, and the modeling done with the optimal dynamic experience of machine learning justifies the current price of NASDAQ shares.
translated by 谷歌翻译
Recent advances in distributed artificial intelligence (AI) have led to tremendous breakthroughs in various communication services, from fault-tolerant factory automation to smart cities. When distributed learning is run over a set of wirelessly connected devices, random channel fluctuations and the incumbent services running on the same network impact the performance of both distributed learning and the coexisting service. In this paper, we investigate a mixed service scenario where distributed AI workflow and ultra-reliable low latency communication (URLLC) services run concurrently over a network. Consequently, we propose a risk sensitivity-based formulation for device selection to minimize the AI training delays during its convergence period while ensuring that the operational requirements of the URLLC service are met. To address this challenging coexistence problem, we transform it into a deep reinforcement learning problem and address it via a framework based on soft actor-critic algorithm. We evaluate our solution with a realistic and 3GPP-compliant simulator for factory automation use cases. Our simulation results confirm that our solution can significantly decrease the training delay of the distributed AI service while keeping the URLLC availability above its required threshold and close to the scenario where URLLC solely consumes all network resources.
translated by 谷歌翻译
Deep learning-based object detection is a powerful approach for detecting faulty insulators in power lines. This involves training an object detection model from scratch, or fine tuning a model that is pre-trained on benchmark computer vision datasets. This approach works well with a large number of insulator images, but can result in unreliable models in the low data regime. The current literature mainly focuses on detecting the presence or absence of insulator caps, which is a relatively easy detection task, and does not consider detection of finer faults such as flashed and broken disks. In this article, we formulate three object detection tasks for insulator and asset inspection from aerial images, focusing on incipient faults in disks. We curate a large reference dataset of insulator images that can be used to learn robust features for detecting healthy and faulty insulators. We study the advantage of using this dataset in the low target data regime by pre-training on the reference dataset followed by fine-tuning on the target dataset. The results suggest that object detection models can be used to detect faults in insulators at a much incipient stage, and that transfer learning adds value depending on the type of object detection model. We identify key factors that dictate performance in the low data-regime and outline potential approaches to improve the state-of-the-art.
translated by 谷歌翻译